Back to Search Start Over

SHARP KATO SMOOTHING PROPERTIES OF WEAKLY DISSIPATED KDV EQUATIONS WITH VARIABLE COEFFICIENTS ON A PERIODIC DOMAIN.

Authors :
SHU-MING SUN
XIN YANG
BING-YU ZHANG
NING ZHONG
Source :
Discrete & Continuous Dynamical Systems: Series A; Dec2022, Vol. 42 Issue 12, p6139-6162, 24p
Publication Year :
2022

Abstract

It is well known that the solutions of the Cauchy problem of the Korteweg-de Vries (KdV) equation on a periodic domain T, u<subscript>t</subscript> + uu<subscript>x</subscript> + u<subscript>xxx</subscript> = 0, u(x, 0) = φ(x), x ∈ T, t ∈ R, possess neither the sharp Kato smoothing property, φ ∈ H<superscript>s</superscript>(T) =⇒ ∂<superscript>s+1</superscript><subscript>x</subscript>u ∈ L<superscript>∞</superscript><subscript>x</subscript> (T, L² (0, T)), nor the Kato smoothing property, φ ∈ H<superscript>s</superscript>(T) =⇒ u ∈ L 2 (0, T; Hs+1(T)). This paper shows that the solutions of the Cauchy problem of following weakly dissipated KdV equation with variable coefficients posed on a periodic domain T, u<subscript>t</subscript> + uu<subscript>x</subscript> + a(x, t)u<subscript>xxx</subscript> − (g(x, t)u<subscript>x</subscript>)<subscript>x</subscript> = 0, u(x, 0) = φ(x), where a and g are given real-valued smooth functions periodic in x satisfying a(x, t) 6 ≠ 0, x ∈ T, t ≥ 0 and ∫<subscript>T</subscript> g(x, t)/|a(x, t)|dx > 0 ∀t ≥ 0, possess the sharp Kato smoothing property, φ ∈ H<superscript>s</superscript>(T) =⇒ ∂<superscript>s+1</superscript><subscript>x</subscript>u ∈ L<superscript>∞</superscript><subscript>x</subscript> (T, L²(0, T)), ∀ s ≥ 0, and the nonlinear part of its solution u possesses the strong Kato smoothing property, φ ∈ H<superscript>s</superscript>(T) =⇒ (u − v) ∈ C([0, T]; H<superscript>s+1</superscript>(T)), ∀ s > ½, and the sharp double Kato smoothing property, φ ∈ H<superscript>s</superscript>(T) =⇒ ∂<superscript>s+2</superscript><subscript>x</subscript> (u − v) ∈ L<superscript>∞</superscript><subscript>x</subscript>(T, L²(0, T)), ∀ s > ½, with v being the solution of the linear problem v<subscript>t</subscript> + a(x, t)v<subscript>xxx</subscript> − (g(x, t)v<subscript>x</subscript>)<subscript>x</subscript> = 0, v(x, 0) = φ(x), x ∈ T, t > 0. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10780947
Volume :
42
Issue :
12
Database :
Complementary Index
Journal :
Discrete & Continuous Dynamical Systems: Series A
Publication Type :
Academic Journal
Accession number :
160316357
Full Text :
https://doi.org/10.3934/dcds.2022140