Back to Search
Start Over
Unsupervised Intrinsic Image Decomposition Using Internal Self-Similarity Cues.
- Source :
- IEEE Transactions on Pattern Analysis & Machine Intelligence; Dec2022, Vol. 44 Issue 12, p9669-9686, 18p
- Publication Year :
- 2022
-
Abstract
- Recent learning-based intrinsic image decomposition methods have achieved remarkable progress. However, they usually require massive ground truth intrinsic images for supervised learning, which limits their applicability on real-world images since obtaining ground truth intrinsic decomposition for natural images is very challenging. In this paper, we present an unsupervised framework that is able to learn the decomposition effectively from a single natural image by training solely with the image itself. Our approach is built upon the observations that the reflectance of a natural image typically has high internal self-similarity of patches, and a convolutional generation network tends to boost the self-similarity of an image when trained for image reconstruction. Based on the observations, an unsupervised intrinsic decomposition network (UIDNet) consisting of two fully convolutional encoder-decoder sub-networks, i.e., reflectance prediction network (RPN) and shading prediction network (SPN), is devised to decompose an image into reflectance and shading by promoting the internal self-similarity of the reflectance component, in a way that jointly trains RPN and SPN to reproduce the given image. A novel loss function is also designed to make effective the training for intrinsic decomposition. Experimental results on three benchmark real-world datasets demonstrate the superiority of the proposed method. [ABSTRACT FROM AUTHOR]
- Subjects :
- SUPERVISED learning
ACOUSTIC surface waves
DECOMPOSITION method
Subjects
Details
- Language :
- English
- ISSN :
- 01628828
- Volume :
- 44
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Pattern Analysis & Machine Intelligence
- Publication Type :
- Academic Journal
- Accession number :
- 160650779
- Full Text :
- https://doi.org/10.1109/TPAMI.2021.3129795