Back to Search Start Over

Improving Robustness of License Plates Automatic Recognition in Natural Scenes.

Authors :
Fan, Xudong
Zhao, Wei
Source :
IEEE Transactions on Intelligent Transportation Systems; Oct2022, Vol. 23 Issue 10, p18845-18854, 10p
Publication Year :
2022

Abstract

Automatic license plate recognition plays an important role in intelligent transportation systems and is of great significance. However, at present, most current approaches are only concerned of license plate recognition under restrictive conditions, where the license plates are shot in a frontal view and under good light conditions. These approaches are not robust enough in real-world complex capture scenarios, such as uneven light condition or oblique shooting angle. In order to improve the robustness of recognizing license plates under complex capture scenarios, a robust license plate detection network (CA-CenterNet) is proposed in this paper, together with a segmentation-free network (CNNG) for the recognition of license plate characters. CA-CenterNet can detect not only the center of each license plate, but also four vectors pointing to the four corners of the corresponding license plate, regardless of the rotation and distortion of the license plates, which gives us the possibility to rectify the distorted license plates in the source images. Then, CNNG can accurately identify the characters in the detected license plates without character segmentation. Experimental results prove that our automatic license plate recognition system has good performance in real-world complex capture scenarios and outperforms current license plate recognition models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15249050
Volume :
23
Issue :
10
Database :
Complementary Index
Journal :
IEEE Transactions on Intelligent Transportation Systems
Publication Type :
Academic Journal
Accession number :
160686526
Full Text :
https://doi.org/10.1109/TITS.2022.3151475