Back to Search Start Over

Convolutional Neural Networks for Omnidirectional Image Quality Assessment: A Benchmark.

Authors :
Sendjasni, Abderrezzaq
Larabi, Mohamed-Chaker
Cheikh, Faouzi Alaya
Source :
IEEE Transactions on Circuits & Systems for Video Technology; Nov2022, Vol. 32 Issue 11, p7301-7316, 16p
Publication Year :
2022

Abstract

In this paper, we conduct an extensive study on the use of pre-trained convolutional neural networks (CNNs) for omnidirectional image quality assessment (IQA). To cope with the lack of available IQA databases, transfer learning from seven pre-trained CNN models is investigated over retraining on standard 2D databases. In addition, we explore the influence of various image representations and training strategies on the model’s performance. A comparison of the use of projected versus radial content, and multichannel CNN versus patch-wise training is also covered. The experimental results on two publicly available databases are used to draw conclusions about which strategy best fits the visual quality prediction and at which computational cost. The analysis shows that retraining CNN models on 2D IQA databases improves the prediction accuracy. The latter and the required computational time are found to be significantly affected by the training strategy. Cross-database evaluations demonstrate that the nature and variety of the content impact the generalization ability of the models. Finally, we show that conclusions coming from other image processing communities may not hold for IQA. The provided discussion shall provide insights and recommendations when using pre-trained CNNs for omnidirectional IQA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10518215
Volume :
32
Issue :
11
Database :
Complementary Index
Journal :
IEEE Transactions on Circuits & Systems for Video Technology
Publication Type :
Academic Journal
Accession number :
160691247
Full Text :
https://doi.org/10.1109/TCSVT.2022.3181235