Back to Search Start Over

Immobilization of gaseous elemental mercury using SnS2-Wrapped magnetic Fe3O4 microspheres.

Authors :
Liu, Dongjing
Yang, Lingtao
Wu, Jiang
Li, Chaoen
Source :
Journal of the Energy Institute (Elsevier Science); Feb2023, Vol. 106, pN.PAG-N.PAG, 1p
Publication Year :
2023

Abstract

A SnS 2 @Fe 3 O 4 composite has been easily synthesized via a KSCN fused salt approach and adopted for capturing elemental mercury at low temperature. Calcination temperature significantly impacts the mercury capture performance of SnS 2 -T. The optimal synthesis temperature for SnS 2 -T is 250 °C. Pristine SnS 2 -250 obtained at 250 °C exhibits a moderate Hg<superscript>0</superscript> adsorption capability with mercury removing efficiency less than 65% within 80–120 °C. Fe 3 O 4 incorporation can notably improve the mercury capture ability of SnS 2 -250 probably due to the cooperative effect between SnS 2 nanoflakes and magnetic Fe 3 O 4 microspheres. SnS 2 -250@Fe 3 O 4 holds a good magnetism (saturation magnetization: 23 emu/g), which performs optimally at 100 °C with Hg<superscript>0</superscript> capture efficiency of 95.2%. Sn<superscript>4+</superscript>, S<superscript>2−</superscript>, Fe<superscript>3+</superscript> ions and chemisorbed oxygen species are principal active sites for Hg<superscript>0</superscript> capture over SnS 2 -250@Fe 3 O 4 , which convert adsorbed Hg<superscript>0</superscript> into HgO, HgS, and HgSO 4. • A SnS 2 @Fe 3 O 4 composite has been facilely obtained via a KSCN molten salt method. • Calcination temperature can notably influence the Hg<superscript>0</superscript> capture performance of SnS 2. • SnS 2 nanoflakes and Fe 3 O 4 microspheres may show a synergy toward Hg<superscript>0</superscript> capture. • Fe 3 O 4 addition can evidently enhance the mercury capture ability of tin disulfide. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
IRON oxides
MICROSPHERES
MERCURY

Details

Language :
English
ISSN :
17439671
Volume :
106
Database :
Complementary Index
Journal :
Journal of the Energy Institute (Elsevier Science)
Publication Type :
Academic Journal
Accession number :
160981396
Full Text :
https://doi.org/10.1016/j.joei.2022.11.008