Back to Search Start Over

Computational Screening and Experimental Validation on Multicomponent Crystals of a New Class of Janus Kinase (JAK) Inhibitor Drug with Improved Solubility.

Authors :
Xie, Yujiang
Shi, Genpei
Sun, Jie
Li, Si
Gao, Wei
Hu, Yimin
Zu, Chang
Tang, Weiwei
Gong, Junbo
Source :
Crystals (2073-4352); Dec2022, Vol. 12 Issue 12, p1722, 16p
Publication Year :
2022

Abstract

Developing multicomponent crystal forms, especially cocrystals and salts, is becoming a promising pathway to improve the solubility and bioavailability of drugs. Herein, new multicomponent crystals of SHR0302, a new generation of Janus Kinase (JAK) inhibitor that suffers from poor solubility, were developed based on a cooperative approach of computational and experimental coformer screenings. Virtual screening methods, including the conductor-like screening model for realistic solvents (COSMO-RS) and molecular complementary (MC) analysis, were employed to predict the binding affinity between SHR0302 and selected coformers. The developed screening method was capable of reducing the screening database to 30 coformers from a total of 42 proposed coformers. The proof-of-concept experimental screening study was performed to demonstrate the efficiency of computational screening, wherein three new multicomponent crystalline forms were found and fully characterized by powder X-ray diffraction, thermal analysis, and IR and <superscript>1</superscript>H-NMR spectroscopy. Further, the measurements of the solubility property of these new multicomponent crystal forms reveal an apparent promotion compared with the drug alone. Finally, the receiver operator characteristic (ROC) curve was used to assess the prediction performance of the COSMO-RS model. It was found that the established screening model can effectively shorten the experimental screening time and efforts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734352
Volume :
12
Issue :
12
Database :
Complementary Index
Journal :
Crystals (2073-4352)
Publication Type :
Academic Journal
Accession number :
160986696
Full Text :
https://doi.org/10.3390/cryst12121722