Back to Search Start Over

Enhancing level set brain tumor segmentation using fuzzy shape prior information and deep learning.

Authors :
Khosravanian, Asieh
Rahmanimanesh, Mohammad
Keshavarzi, Parviz
Mozaffari, Saeed
Source :
International Journal of Imaging Systems & Technology; Jan2023, Vol. 33 Issue 1, p323-339, 17p
Publication Year :
2023

Abstract

Magnetic resonance imaging (MRI) brain tumor segmentation is a crucial task for clinical treatment. However, it is challenging owing to variations in type, size, and location of tumors. In addition, anatomical variation in individuals, intensity non‐uniformity, and noises adversely affect brain tumor segmentation. To address these challenges, an automatic region‐based brain tumor segmentation approach is presented in this paper which combines fuzzy shape prior term and deep learning. We define a new energy function in which an Adaptively Regularized Kernel‐Based Fuzzy C‐Means (ARKFCM) Clustering algorithm is utilized for inferring the shape of the tumor to be embedded into the level set method. In this way, some shortcomings of traditional level set methods such as contour leakage and shrinkage have been eliminated. Moreover, a fully automated method is achieved by using U‐Net to obtain the initial contour, reducing sensitivity to initial contour selection. The proposed method is validated on the BraTS 2017 benchmark dataset for brain tumor segmentation. Average values of Dice, Jaccard, Sensitivity and specificity are 0.93 ± 0.03, 0.86 ± 0.06, 0.95 ± 0.04, and 0.99 ± 0.003, respectively. Experimental results indicate that the proposed method outperforms the other state‐of‐the‐art methods in brain tumor segmentation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
08999457
Volume :
33
Issue :
1
Database :
Complementary Index
Journal :
International Journal of Imaging Systems & Technology
Publication Type :
Academic Journal
Accession number :
161283310
Full Text :
https://doi.org/10.1002/ima.22792