Back to Search Start Over

Environmental Sustainability of Industrial Waste-Based Cementitious Materials: A Review, Experimental Investigation and Life-Cycle Assessment.

Authors :
Navaratnam, Satheeskumar
Tushar, Quddus
Jahan, Israt
Zhang, Guomin
Source :
Sustainability (2071-1050); Feb2023, Vol. 15 Issue 3, p1873, 20p
Publication Year :
2023

Abstract

Wall plaster production induces significant environmental impacts during its entire life as it consumes a high amount of cement and natural resources. Therefore, in sustainable development, industrial wastes are partially replaced to produce cementitious material to reduce environmental impacts. This study aims to identify the optimal environmental benefits from the waste-based cementitious materials that are used to produce wall plaster. Thus, this study involved conducting a comprehensive review of the mechanical and sustainable performance of industrial waste-based cementitious materials focused on wall construction. Then, an experimental test was conducted to ensure the appropriate mix design to enable the required compressive strength. A comparative analysis of mortar showed that it contained 15% (by weight) of fly ash, blast furnace slag, bottom ash, recycled glass, ferronickel slag, expanded polystyrene and wood ash using life-cycle assessment. The results show that mortar containing fly ash has lower environmental impacts in almost all impact categories (i.e., human health, the ecosystem and natural resources). Endpoint damage assessment of mortar mixtures expresses resource extraction cost as the most affected impact criteria. The replacement of globally consumed cement with 15% fly ash can contribute to monetary savings of up to USD 87.74 billion. The assessment clarifies the advantage of incorporating waste products in cement mortar, which allows policymakers to interpret the analysis for decision making. This study also found that the production of industrial wastes for mortar mixes has a significant impact on the environment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20711050
Volume :
15
Issue :
3
Database :
Complementary Index
Journal :
Sustainability (2071-1050)
Publication Type :
Academic Journal
Accession number :
161874773
Full Text :
https://doi.org/10.3390/su15031873