Back to Search Start Over

Transcriptome Analysis of 5-Aminolevulinic Acid Contributing to Cold Tolerance in Tea Leaves (Camellia sinensis L.).

Authors :
Yan, Fei
Qu, Dong
Chen, Xiaohua
Yang, Jianjun
Zeng, Haitao
Li, Xinsheng
Source :
Forests (19994907); Feb2023, Vol. 14 Issue 2, p198, 20p
Publication Year :
2023

Abstract

Tea (Camellia sinensis L.) is an important perennial cash crop and a typical subtropical plant. It is widely concerned because of its unique flavor and health benefits. In recent years, low temperatures have severely restricted the growth of tea plants and quality of tea products, especially in spring. As a common precursor for all porphyrin compounds, 5-aminolevulinic acid (ALA) is involved in photosynthesis and respiration and plays an active role in improving salt, drought and low-temperature tolerance in plants. However, it is not yet clear what affect exogenous ALA has on tea plants' tolerance under low temperature. In the present study, we collected and deciphered the transcriptome profiles from Shaancha No. 1 leaf tissues under low temperature (−4 °C) treatment (T-4), exogenous ALA application (T-A), pretreated ALA before low temperature (T-A-4) and untreated control (T-CK). Results showed that 4990 (2375 up- and 2615 down-regulated), 223 (103 up- and 120 down-regulated) and 92 (13 up- and 79 down-regulated) differentially expression genes (DEGs) were identified at T-CK vs. T-4, T-CK vs. T-A and T-4 vs. T-A-4, respectively. Both T-4 and T-A treatments triggered a myriad of stress resistance genes up-regulated related to multiple signaling pathways by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. This included MAPK, a toll-like receptor that signals pathways involved in cold resistance. However, gene ontology (GO) analysis showed that the DEGs in T-4 treatment were mainly enriched in the phenylpropanoid metabolic and redox processes that were relevant to membrane structure damage response. In contrast, the DEGs in T-A treatment were mainly enriched in cell recognition and amylase activity. Furthermore, in pairwise comparison of T-A-4 vs. T-4, the DEGs were enriched in ascorbate and aldarate, retionol, taurine and hypotaurine, glutathione metabolic pathways and two biosynthesis process including zeatin, diterpenoid biosynthesis, which might contribute to mitigating the damage caused by low temperature. Overall, these results indicated that exogenous ALA application may improve the biochemical attributes and enhance the tolerance to low temperature, which provides a valuable strategy to improve tea quality and cold stress. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994907
Volume :
14
Issue :
2
Database :
Complementary Index
Journal :
Forests (19994907)
Publication Type :
Academic Journal
Accession number :
162118410
Full Text :
https://doi.org/10.3390/f14020198