Back to Search Start Over

Melatonin Promotes the Development of Secondary Hair Follicles in Adult Cashmere Goats by Activating the Keap1-Nrf2 Signaling Pathway and Inhibiting the Inflammatory Transcription Factors NFκB and AP-1.

Authors :
Diao, Xiaogao
Duan, Chunhui
Yao, Lingyun
Qin, Jiaxin
He, Liwen
Zhang, Wei
Source :
International Journal of Molecular Sciences; Feb2023, Vol. 24 Issue 4, p3403, 17p
Publication Year :
2023

Abstract

Exogenous melatonin (MT) has been used to promote the growth of secondary hair follicles and improve cashmere fiber quality, but the specific cellular-level mechanisms involved are unclear. This study was carried out to investigate the effect of MT on the development of secondary hair follicles and on cashmere fiber quality in cashmere goats. The results showed that MT improved secondary follicle numbers and function as well as enhanced cashmere fiber quality and yield. The MT-treated goat groups had high secondary-to-primary ratios (S:P) for hair follicles, greater in the elderly group (p < 0.05). Antioxidant capacities of secondary hair follicles improved fiber quality and yield in comparison with control groups (p < 0.05/0.01). Levels of reactive oxygen and nitrogen species (ROS, RNS) and malondialdehyde (MDA) were lowered (p < 0.05/0.01) by MT. There was significant upregulation of antioxidant genes (for SOD-3; GPX-1; NFE2L2) and the protein of nuclear factor (Nrf2), and downregulation of the Keap1 protein. There were significant differences in the expression of genes for secretory senescence-associated phenotype (SASP) cytokines (IL-1β, IL-6, MMP-9, MMP-27, CCL-21, CXCL-12, CXCL-14, TIMP-1,2,3) plus their protein of key transcription factors, nuclear factor kappa B (NFκB) and activator protein-1 (AP-1), in comparison with the controls. We concluded that MT could enhance antioxidant capacity and reduce ROS and RNS levels of secondary hair follicles through the Keap1-Nrf2 pathway in adult cashmere goats. Furthermore, MT reduced the expression of the SASP cytokines genes by inhibiting the protein of NFκB and AP-1 in the secondary hair follicles in older cashmere goats, thus delaying skin aging, improving follicle survival, and increasing the number of secondary hair follicles. Collectively, these effects of exogenous MT enhanced the quality and yield of cashmere fibers, especially at 5–7 years old. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
4
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
162140987
Full Text :
https://doi.org/10.3390/ijms24043403