Back to Search
Start Over
Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system.
- Source :
- Communications Biology; 3/2/2023, Vol. 6 Issue 1, p1-24, 24p
- Publication Year :
- 2023
-
Abstract
- Sensitive and rapid point-of-care assays have been crucial in the global response to SARS-CoV-2. Loop-mediated isothermal amplification (LAMP) has emerged as an important diagnostic tool given its simplicity and minimal equipment requirements, although limitations exist regarding sensitivity and the methods used to detect reaction products. We describe the development of Vivid COVID-19 LAMP, which leverages a metallochromic detection system utilizing zinc ions and a zinc sensor, 5-Br-PAPS, to circumvent the limitations of classic detection systems dependent on pH indicators or magnesium chelators. We make important strides in improving RT-LAMP sensitivity by establishing principles for using LNA-modified LAMP primers, multiplexing, and conducting extensive optimizations of reaction parameters. To enable point-of-care testing, we introduce a rapid sample inactivation procedure without RNA extraction that is compatible with self-collected, non-invasive gargle samples. Our quadruplexed assay (targeting E, N, ORF1a, and RdRP) reliably detects 1 RNA copy/µl of sample (=8 copies/reaction) from extracted RNA and 2 RNA copies/µl of sample (=16 copies/reaction) directly from gargle samples, making it one of the most sensitive RT-LAMP tests and even comparable to RT-qPCR. Additionally, we demonstrate a self-contained, mobile version of our assay in a variety of high-throughput field testing scenarios on nearly 9,000 crude gargle samples. Vivid COVID-19 LAMP can be an important asset for the endemic phase of COVID-19 as well as preparing for future pandemics. Vivid COVID-19 LAMP is an ultrasensitive zinc ion and zinc sensor based colorimetric detection system, reliably detecting viral RNA from self-collected, non-invasive gargle samples for rapid point-of-care testing. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 6
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- 162206721
- Full Text :
- https://doi.org/10.1038/s42003-023-04612-9