Back to Search
Start Over
Comparison of a chronic kidney disease predictive model for type 2 diabetes mellitus in Malaysia using Cox regression versus machine learning approach.
- Source :
- Clinical Kidney Journal; Mar2023, Vol. 16 Issue 3, p549-559, 11p
- Publication Year :
- 2023
-
Abstract
- Background Diabetes is one of the leading causes of chronic kidney disease (CKD) and end-stage renal disease. This study aims to develop and validate different risk predictive models for incident CKD and CKD progression in people with type 2 diabetes (T2D). Methods We reviewed a cohort of people with T2D seeking care from two tertiary hospitals in the metropolitan cities of the state of Selangor and Negeri Sembilan from January 2012 to May 2021. To identify the 3-year predictor of developing CKD (primary outcome) and CKD progression (secondary outcome), the dataset was randomly split into a training and test set. A Cox proportional hazards (CoxPH) model was developed to identify predictors of developing CKD. The resultant CoxPH model was compared with other machine learning models on their performance using C-statistic. Results The cohorts included 1992 participants, of which 295 had developed CKD and 442 reported worsening of kidney function. Equation for the 3-year risk of developing CKD included gender, haemoglobin A1c, triglyceride and serum creatinine levels, estimated glomerular filtration rate, history of cardiovascular disease and diabetes duration. For risk of CKD progression, the model included systolic blood pressure, retinopathy and proteinuria. The CoxPH model was better at prediction compared with other machine learning models examined for incident CKD (C-statistic: training 0.826; test 0.874) and CKD progression (C-statistic: training 0.611; test 0.655). The risk calculator can be found at https://rs59.shinyapps.io/071221/. Conclusions The Cox regression model was the best performing model to predict people with T2D who will develop a 3-year risk of incident CKD and CKD progression in a Malaysian cohort. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20488505
- Volume :
- 16
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Clinical Kidney Journal
- Publication Type :
- Academic Journal
- Accession number :
- 162394039
- Full Text :
- https://doi.org/10.1093/ckj/sfac252