Back to Search
Start Over
STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data.
- Source :
- CMES-Computer Modeling in Engineering & Sciences; 2023, Vol. 136 Issue 3, p2635-2654, 20p
- Publication Year :
- 2023
-
Abstract
- Transmission line (TL) Parameter Identification (PI) method plays an essential role in the transmission system. The existing PI methods usually have two limitations: (1) These methods only model for single TL, and can not consider the topology connection of multiple branches for simultaneous identification. (2) Transient bad data is ignored by methods, and the random selection of terminal section data may cause the distortion of PI and have serious consequences. Therefore, a multi-task PI model considering multiple TLs’ spatial constraints and massive electrical section data is proposed in this paper. The Graph Attention Network module is used to draw a single TL into a node and calculate its influence coefficient in the transmission network. Multi-Task strategy of Hard Parameter Sharing is used to identify the conductance of multiple branches simultaneously. Experiments show that the method has good accuracy and robustness. Due to the consideration of spatial constraints, the method can also obtain more accurate conductance values under different training and testing conditions. [ABSTRACT FROM AUTHOR]
- Subjects :
- PARAMETER identification
ELECTRIC lines
DEEP learning
Subjects
Details
- Language :
- English
- ISSN :
- 15261492
- Volume :
- 136
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- CMES-Computer Modeling in Engineering & Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 162444373
- Full Text :
- https://doi.org/10.32604/cmes.2023.025405