Back to Search
Start Over
A birefringent spectral demultiplexer enables fast hyper-spectral imaging of protoporphyrin IX during neurosurgery.
- Source :
- Communications Biology; 3/30/2023, Vol. 6 Issue 1, p1-8, 8p
- Publication Year :
- 2023
-
Abstract
- Hyperspectral imaging and spectral analysis quantifies fluorophore concentration during fluorescence-guided surgery1–6. However, acquisition of the multiple wavelengths required to implement these methods can be time-consuming and hinder surgical workflow. To this end, a snapshot hyperspectral imaging system capable of acquiring 64 channels of spectral data simultaneously was developed for rapid hyperspectral imaging during neurosurgery. The system uses a birefringent spectral demultiplexer to split incoming light and redirect wavelengths to different sections of a large format microscope sensor. Its configuration achieves high optical throughput, accepts unpolarized input light and exceeds channel count of prior image-replicating imaging spectrometers by 4-fold. Tissue-simulating phantoms consisting of serial dilutions of the fluorescent agent characterize system linearity and sensitivity, and comparisons to performance of a liquid crystal tunable filter based hyperspectral imaging device are favorable. The new instrument showed comparable, if not improved, sensitivity at low fluorophore concentrations; yet, acquired wide-field images at more than 70-fold increase in frame rate. Image data acquired in the operating room during human brain tumor resection confirm these findings. The new device is an important advance in achieving real-time quantitative imaging of fluorophore concentration for guiding surgery. A wide-field imaging system uses birefringence to efficiently permit quantitative fluorophore concentration mapping, with clear relevance for neurosurgery. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23993642
- Volume :
- 6
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Communications Biology
- Publication Type :
- Academic Journal
- Accession number :
- 162754884
- Full Text :
- https://doi.org/10.1038/s42003-023-04701-9