Back to Search
Start Over
Some fundamental elements for studying social-ecological co-existence in forest common pool resources.
- Source :
- PeerJ; Feb2023, p1-32, 32p
- Publication Year :
- 2023
-
Abstract
- For millennia, societies have tried to find ways to sustain people's livelihoods by setting rules to equitably and sustainably access, harvest and manage common pools of resources (CPR) that are productive and rich in species. But what are the elements that explain historical successes and failures? Elinor Ostrom suggested that it depends on at least eight axiomatic principles of good governance, whereas empirical results suggest that these principles are not sufficient to describe them, especially when applied to CPRs that possess great social and ecological diversity. The aim of this article is to explore the behavior of a mathematical model of multi-species forest dynamics that respects the foundations of ecology and Ostrom's governance theory, in order to detect possible constraints inherent to the functioning of these complex systems. The model reveals that fundamental structural laws of compatibilities between species life-history traits are indeed constraining the level of co-existence (average and variance) between a diversity of co-vulnerable timber resource users (RU) and of competing tree species. These structural constraints can also lead to unexpected outcomes. For instance in wetter forest commons, opening up the access to as many diverse RUs as there are competing tree species, produces a diversity of independently-controlled disturbances on species, collectively improving the chances of coexistence between species with different life-history traits. Similar benefits are observed on forest carbon and on profits from timber harvesting. However in drier forest commons, the same benefits cannot be observed, as predicted on the basis of the constraining laws. The results show that the successes and failures of certain management strategies can be reasonably explained by simple mechanistic theories from ecology and the social-ecological sciences, which are themselves constrained by fundamental ecological invariants. If corroborated, the results could be used, in conjunction with Ostrom's CPR theory, to understand and solve various human-nature coexistence dilemmas in complex social-ecological systems. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21678359
- Database :
- Complementary Index
- Journal :
- PeerJ
- Publication Type :
- Academic Journal
- Accession number :
- 162886946
- Full Text :
- https://doi.org/10.7717/peerj.14731