Back to Search Start Over

Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics.

Authors :
Dans, Madeline G.
Piirainen, Henni
Nguyen, William
Khurana, Sachin
Mehra, Somya
Razook, Zahra
Geoghegan, Niall D.
Dawson, Aurelie T.
Das, Sujaan
Parkyn Schneider, Molly
Jonsdottir, Thorey K.
Gabriela, Mikha
Gancheva, Maria R.
Tonkin, Christopher J.
Mollard, Vanessa
Goodman, Christopher Dean
McFadden, Geoffrey I.
Wilson, Danny W.
Rogers, Kelly L.
Barry, Alyssa E.
Source :
PLoS Biology; 4/13/2023, Vol. 21 Issue 4, p1-34, 34p, 1 Diagram, 1 Chart, 6 Graphs
Publication Year :
2023

Abstract

With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation. This study identifies the sulfonylpiperazines as a series of compounds that reduce actin polymerization in the malaria parasite via a profilin-mediated mechanism of action, preventing invasion of red blood cells and demonstrating the druggable nature of the actin-profilin interaction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15449173
Volume :
21
Issue :
4
Database :
Complementary Index
Journal :
PLoS Biology
Publication Type :
Academic Journal
Accession number :
163070441
Full Text :
https://doi.org/10.1371/journal.pbio.3002066