Back to Search Start Over

Structure and mechanism of the alkane-oxidizing enzyme AlkB.

Authors :
Guo, Xue
Zhang, Jianxiu
Han, Lei
Lee, Juliet
Williams, Shoshana C.
Forsberg, Allison
Xu, Yan
Austin, Rachel Narehood
Feng, Liang
Source :
Nature Communications; 4/17/2023, Vol. 14 Issue 1, p1-9, 9p
Publication Year :
2023

Abstract

Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms. Alkane monooxygenase (AlkB) plays a key role in the global carbon cycle and remediation of oil spills. Here, the authors report the cryo-EM structure of AlkB to provide insight into the catalytic mechanism and substrate selectivity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
163149816
Full Text :
https://doi.org/10.1038/s41467-023-37869-z