Back to Search Start Over

Selective accumulation of pharmaceutical residues from 6 different soils by plants: a comparative study on onion, radish, and spinach.

Authors :
Menacherry, Sunil Paul M.
Kodešová, Radka
Švecová, Helena
Klement, Aleš
Fér, Miroslav
Nikodem, Antonín
Grabic, Roman
Source :
Environmental Science & Pollution Research; Apr2023, Vol. 30 Issue 18, p54160-54176, 17p
Publication Year :
2023

Abstract

The accumulation of six pharmaceuticals of different therapeutic uses has been thoroughly investigated and compared between onion, spinach, and radish plants grown in six soil types. While neutral molecules (e.g., carbamazepine (CAR) and some of its metabolites) were efficiently accumulated and easily translocated to the plant leaves (onion > radish > spinach), the same for ionic (both anionic and cationic) molecules seems to be minor to moderate. The maximum accumulation of CAR crosses 38,000 (onion), 42,000 (radish), and 7000 (spinach) ng g<superscript>−1</superscript> (dry weight) respectively, in which the most majority of them happened within the plant leaves. Among the metabolites, the accumulation of carbamazepine 10,11-epoxide (EPC — a primary CAR metabolite) was approximately 19,000 (onion), 7000 (radish), and 6000 (spinach) ng g<superscript>−1</superscript> (dry weight) respectively. This trend was considerably similar even when all these pharmaceuticals applied together. The accumulation of most other molecules (e.g., citalopram, clindamycin, clindamycin sulfoxide, fexofenadine, irbesartan, and sulfamethoxazole) was restricted to plant roots, except for certain cases (e.g., clindamycin and clindamycin sulfoxide in onion leaves). Our results clearly demonstrated the potential role of this accumulation process on the entrance of pharmaceuticals/metabolites into the food chain, which eventually becomes a threat to associated living biota. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
30
Issue :
18
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
163232817
Full Text :
https://doi.org/10.1007/s11356-023-26102-5