Back to Search Start Over

A Universal Law of Robustness via Isoperimetry.

Authors :
BUBECK, SÉBASTIEN
SELLKE, MARK
Source :
Journal of the ACM; Apr2023, Vol. 70 Issue 2, p1-18, 18p
Publication Year :
2023

Abstract

Classically, data interpolation with a parametrizedmodel class is possible as long as the number of parameters is larger than the number of equations to be satisfied. A puzzling phenomenon in deep learning is that models are trained with many more parameters than what this classical theory would suggest. We propose a partial theoretical explanation for this phenomenon.We prove that for a broad class of data distributions and model classes, overparametrization is necessary if one wants to interpolate the data smoothly. Namely we show that smooth interpolation requires d times more parameters than mere interpolation, where d is the ambient data dimension. We prove this universal law of robustness for any smoothly parametrized function class with polynomial size weights, and any covariate distribution verifying isoperimetry (or a mixture thereof). In the case of two-layer neural networks and Gaussian covariates, this law was conjectured in prior work by Bubeck, Li, and Nagaraj. We also give an interpretation of our result as an improved generalization bound for model classes consisting of smooth functions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00045411
Volume :
70
Issue :
2
Database :
Complementary Index
Journal :
Journal of the ACM
Publication Type :
Academic Journal
Accession number :
163237925
Full Text :
https://doi.org/10.1145/3578580