Back to Search Start Over

Evaluation of Artificial Precipitation Enhancement Using UNET-GRU Algorithm for Rainfall Estimation.

Authors :
Liu, Renfeng
Zhou, Huabing
Li, Dejun
Zeng, Liping
Xu, Peihua
Source :
Water (20734441); Apr2023, Vol. 15 Issue 8, p1585, 17p
Publication Year :
2023

Abstract

The evaluation of the effects of artificial precipitation enhancement remains one of the most important and challenging issues in the fields of meteorology. Rainfall is the most important evaluation metric for artificial precipitation enhancement, which is mainly achieved through physics-based models that simulate physical phenomena and data-driven statistical models. The series of effect evaluation methods requires the selection of a comparison area for effect comparison, and idealized assumptions and simplifications have been made for the actual cloud precipitation process, leading to unreliable quantitative evaluation results of artificial precipitation effects. This paper proposes a deep learning-based method (UNET-GRU) to quantitatively evaluate the effect of artificial rainfall. By comparing the residual values obtained from inverting the natural evolution grid rainfall of the same area under the same artificial rainfall conditions with the actual rainfall amount after artificial rainfall operations, the effect of artificial rainfall can be quantitatively evaluated, effectively solving the problem of quantitative evaluation of artificial precipitation effects. Wuhan and Shiyan in China are selected to represent typical plains and mountainous areas, respectively, and the method is evaluated using 6-min resolution radar weather data from 2017 to 2020. During the experiment, we utilized the UNET-GRU algorithm and developed separate algorithms for comparison against common persistent baselines (i.e., the next-time data of the training data). The prediction of mean squared error (MSE) for these three algorithms was significantly lower than that of the baseline data. Moreover, the indicators for these algorithms were excellent, further demonstrating their efficacy. In addition, the residual results of the estimated 7-h grid rainfall were compared with the actual recorded rainfall to evaluate the effectiveness of artificial precipitation. The results showed that the estimated rainfall was consistent with the recorded precipitation for that year, indicating that deep learning methods can be successfully used to evaluate the impact of artificial precipitation. The results demonstrate that this method improves the accuracy of effect evaluation and enhances the generalization ability of the evaluation scheme. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734441
Volume :
15
Issue :
8
Database :
Complementary Index
Journal :
Water (20734441)
Publication Type :
Academic Journal
Accession number :
163461009
Full Text :
https://doi.org/10.3390/w15081585