Back to Search Start Over

Transcriptional diversity in specific synaptic gene sets discriminates cortical neuronal identity.

Authors :
Roig Adam, Amparo
Martínez-López, José A.
van der Spek, Sophie J. F.
The SYNGO consortium
Achsel, Tilmann
Andres-Alonso, Maria
Bagni, Claudia
Bayés, Àlex
Biederer, Thomas
Brose, Nils
Chua, John Jia En
Coba, Marcelo P.
Cornelisse, L. Niels
de Juan-Sanz, Jaime
Goldschmidt, Hana L.
Gundelfinger, Eckart D.
Huganir, Richard L.
Imig, Cordelia
Jahn, Reinhard
Jung, Hwajin
Source :
Biology Direct; 5/9/2023, Vol. 18 Issue 1, p1-10, 10p
Publication Year :
2023

Abstract

Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17456150
Volume :
18
Issue :
1
Database :
Complementary Index
Journal :
Biology Direct
Publication Type :
Academic Journal
Accession number :
163634080
Full Text :
https://doi.org/10.1186/s13062-023-00372-y