Back to Search Start Over

Paraffin@poly(methyl methacrylate) Phase Change Microcapsules for Thermal Energy Storage and Temperature Regulation.

Authors :
Li, Yujiao
Xu, Lei
Jiang, Zhuoni
Li, Yongsheng
He, Fangfang
Zhang, Kai
He, Ren
Chen, Zhengguo
Yang, Wenbin
Source :
ChemistrySelect; 5/11/2023, Vol. 8 Issue 18, p1-14, 14p
Publication Year :
2023

Abstract

A series of paraffin@poly(methyl methacrylate) phase‐change microcapsules (Pn@PMMA) were synthesized by suspension polymerization. The prepared Pn@PMMA had excellent latent heat storage and release properties (ΔHm=183.2 J/g, ΔHc=181.9 J/g), excellent thermal stability and cycle durability of at least 100 cycles. The effects of emulsifier type, cross‐linking agent content and core/shell mass ratio on structure and properties of Pn@PMMA were investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR) and differential scanning calorimetry (DSC). The morphology of Pn@PMMA exhibited spherical profile with styrene‐maleic anhydride (SMA) as emulsifier and the agglomeration was significantly reduced. The enthalpy of the microcapsules was significantly improved with the addition of crosslinker. The anti‐permeability of Pn@PMMA subsequently further improved with continued increasing amount of cross‐linker. Besides, the enthalpy and anti‐leaking property of the microcapsules progressively reduced with the core/shell mass ratio decreased, while the thermal conductivity gradually increased. Therefore, the results showed that the Pn@PMMA with the enthalpy of 183.2 J/g and the leakage rate of 4.72 %, which displayed a high thermal reliability potential for thermal energy storage and temperature regulation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23656549
Volume :
8
Issue :
18
Database :
Complementary Index
Journal :
ChemistrySelect
Publication Type :
Academic Journal
Accession number :
163670133
Full Text :
https://doi.org/10.1002/slct.202203857