Back to Search Start Over

Ballistic Ejection of Microdroplets from Overpacked Interfacial Assemblies.

Authors :
Wu, Xuefei
Bordia, Gautam
Streubel, Robert
Hasnain, Jaffar
Pedroso, Cássio C.S.
Cohen, Bruce E.
Rad, Behzad
Ashby, Paul
Omar, Ahmad K.
Geissler, Phillip L.
Wang, Dong
Xue, Han
Wang, Jianjun
Russell, Thomas P.
Source :
Advanced Functional Materials; 5/12/2023, Vol. 33 Issue 20, p1-7, 7p
Publication Year :
2023

Abstract

Spontaneous emulsification, resulting from the assembly and accumulation of surfactants at liquid–liquid interfaces, is an interfacial instability where microdroplets are generated and diffusively spread from the interface until complete emulsification. Here, it is shown that an external magnetic field can modulate the assembly of paramagnetic nanoparticle surfactants (NPSs) at liquid–liquid interfaces to trigger an oversaturation in the areal density of the NPSs at the interface, as evidenced by a marked reduction in the interfacial tension, γ, and corroborated with a magnetostatic continuum theory. Despite the significant reduction in γ, the presence of the magnetic field does not cause stable interfaces to become unstable. Upon rapid removal of the field, however, an explosive ejection of a plume of microdroplets from the surface occurs, a dynamical interfacial instability which is termed explosive emulsification. This explosive event rapidly reduces the areal density of the NPSs to its pre‐field level, stabilizing the interface. The ability to externally suppress or trigger the explosive emulsification and controlled generation of tens of thousands of microdroplets, uncovers an efficient energy storage and release process, that has potential applications for controlled and directed delivery of chemicals and remotely controlled soft microrobots, taking advantage of the ferromagnetic nature of the microdroplets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
33
Issue :
20
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
163705135
Full Text :
https://doi.org/10.1002/adfm.202213844