Back to Search Start Over

Effects of Climate Change on Streamflow in the Godavari Basin Simulated Using a Conceptual Model including CMIP6 Dataset.

Authors :
Reddy, Nagireddy Masthan
Saravanan, Subbarayan
Almohamad, Hussein
Al Dughairi, Ahmed Abdullah
Abdo, Hazem Ghassan
Source :
Water (20734441); May2023, Vol. 15 Issue 9, p1701, 28p
Publication Year :
2023

Abstract

Hydrological reaction to climate change anticipates water cycle alterations. To ensure long-term water availability and accessibility, it is essential to develop sustainable water management strategies and better hydrological models that can simulate peak flow. These efforts will aid in water resource planning, management, and climate change mitigation. This study develops and compares Sacramento, Australian Water Balance Model (AWBM), TANK, and SIMHYD conceptual models to simulate daily streamflow at Rajegaon station of the Pranhita subbasin in the Godavari basin of India. The study uses daily Indian Meteorological Department (IMD) gridded rainfall and temperature datasets. For 1987–2019, 70% of the models were calibrated and 30% validated. Pearson correlation (CC), Nash Sutcliffe efficiency (NSE), Root mean square error (RMSE), and coefficient of determination (CD) between the observed and simulated streamflow to evaluate model efficacy. The best conceptual (Sacramento) model selected to forecast future streamflow for the SSP126, SSP245, SSP370, and SSP585 scenarios for the near (2021–2040), middle (2041–2070), and far future (2071–2100) using EC-Earth3 data was resampled and bias-corrected using distribution mapping. In the far future, the SSP585 scenario had the most significant relative rainfall change (55.02%) and absolute rise in the annual mean temperature (3.29 °C). In the middle and far future, the 95th percentile of monthly streamflow in the wettest July is anticipated to rise 40.09% to 127.06% and 73.90% to 215.13%. SSP370 and SSP585 scenarios predicted the largest streamflow increases in all three time periods. In the near, middle, and far future, the SSP585 scenario projects yearly relative streamflow changes of 72.49%, 93.80%, and 150.76%. Overall, the findings emphasize the importance of considering the potential impacts of future scenarios on water resources to develop effective and sustainable water management practices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734441
Volume :
15
Issue :
9
Database :
Complementary Index
Journal :
Water (20734441)
Publication Type :
Academic Journal
Accession number :
163724568
Full Text :
https://doi.org/10.3390/w15091701