Back to Search Start Over

High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy.

Authors :
Harvey, MacAulay
Cisek, Richard
Alizadeh, Mehdi
Barzda, Virginijus
Kreplak, Laurent
Tokarz, Danielle
Source :
Nanophotonics (21928606); May2023, Vol. 12 Issue 11, p2061-2071, 11p
Publication Year :
2023

Abstract

Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21928606
Volume :
12
Issue :
11
Database :
Complementary Index
Journal :
Nanophotonics (21928606)
Publication Type :
Academic Journal
Accession number :
163820699
Full Text :
https://doi.org/10.1515/nanoph-2023-0177