Back to Search
Start Over
Fredholm composition operators on Hardy-Sobolev spaces with bounded reproducing kernel.
- Source :
- Proceedings of the American Mathematical Society; Aug2023, Vol. 151 Issue 8, p3457-3468, 12p
- Publication Year :
- 2023
-
Abstract
- For any real \beta let H^2_\beta be the Hardy-Sobolev space on the unit ball \mathbb {B}_{n}, n\geq 1. H^2_\beta is a reproducing kernel Hilbert space and its reproducing kernel is bounded when \beta >n/2. In this paper, we characterize when the composition operator C_{\varphi } on H^{2}_{\beta } is Fredholm for a non-constant analytic map \varphi :\mathbb {B}_{n}\to \mathbb {B}_{n}. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 151
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 163842793
- Full Text :
- https://doi.org/10.1090/proc/16319