Back to Search Start Over

Electron heat transport in low-rank lignite: combining experimental and computational methods.

Authors :
Liu, Jing-Wen
Xiao, Yang
Wang, Zhen-Ping
Li, Qing-Wei
Source :
Journal of Thermal Analysis & Calorimetry; Jun2023, Vol. 148 Issue 11, p4759-4768, 10p
Publication Year :
2023

Abstract

Coal fire combustion has been known for a long time to be a complicated physical and chemical process, and finding hidden coal fires has always been a challenge. With the arrival of an advanced quantum detection method, such fires can be accurately identified. Before applying the method to detect hidden coal fires, researchers must develop a better understanding of the transport properties of heat carriers in coal. An examination of a lignite sample taken from a typical coal fire region (Tunbao, Xinjiang, China) was conducted using experimental and computational methods. The molecular structure of Tunbao coal was clarified using methods such as <superscript>13</superscript>C-NMR, XPS, and elemental analysis. A model of Tunbao coal's molecular structure was generated, and its chemical formula was C<subscript>311</subscript>H<subscript>209</subscript>N<subscript>3</subscript>O<subscript>68</subscript>. Moreover, ab initio molecular dynamics was used to compute the heat carriers in coal molecules. As revealed by calculations, this coal is a semiconductor with metallic characteristics and is capable of transporting electrons. Naphthalene and pyrrole contribute to this metallicity, and coals with larger amounts of naphthalene and pyrrole may have stronger electrical conductivity. In accordance with the AIMD results, when the temperature rose, the electron transport of coal molecules became more frequent and powerful, resulting in increased electrical conductivity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13886150
Volume :
148
Issue :
11
Database :
Complementary Index
Journal :
Journal of Thermal Analysis & Calorimetry
Publication Type :
Academic Journal
Accession number :
163853208
Full Text :
https://doi.org/10.1007/s10973-023-12032-4