Back to Search Start Over

An Efficient Cloud Classification Method Based on a Densely Connected Hybrid Convolutional Network for FY-4A.

Authors :
Wang, Bo
Zhou, Mingwei
Cheng, Wei
Chen, Yao
Sheng, Qinghong
Li, Jun
Wang, Li
Source :
Remote Sensing; May2023, Vol. 15 Issue 10, p2673, 19p
Publication Year :
2023

Abstract

Understanding atmospheric motions and projecting climate changes depends significantly on cloud types, i.e., different cloud types correspond to different atmospheric conditions, and accurate cloud classification can help forecasts and meteorology-related studies to be more effectively directed. However, accurate classification of clouds is challenging and often requires certain manual involvement due to the complex cloud forms and dispersion. To address this challenge, this paper proposes an improved cloud classification method based on a densely connected hybrid convolutional network. A dense connection mechanism is applied to hybrid three-dimensional convolutional neural network (3D-CNN) and two-dimensional convolutional neural network (2D-CNN) architectures to use the feature information of the spatial and spectral channels of the FY-4A satellite fully. By using the proposed network, cloud categorization solutions with a high temporal resolution, extensive coverage, and high accuracy can be obtained without the need for any human intervention. The proposed network is verified using tests, and the results show that it can perform real-time classification tasks for seven different types of clouds and clear skies in the Chinese region. For the CloudSat 2B-CLDCLASS product as a test target, the proposed network can achieve an overall accuracy of 95.2% and a recall of more of than 82.9% for all types of samples, outperforming the other deep-learning-based techniques. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
10
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
163989286
Full Text :
https://doi.org/10.3390/rs15102673