Back to Search
Start Over
An Efficient Cloud Classification Method Based on a Densely Connected Hybrid Convolutional Network for FY-4A.
- Source :
- Remote Sensing; May2023, Vol. 15 Issue 10, p2673, 19p
- Publication Year :
- 2023
-
Abstract
- Understanding atmospheric motions and projecting climate changes depends significantly on cloud types, i.e., different cloud types correspond to different atmospheric conditions, and accurate cloud classification can help forecasts and meteorology-related studies to be more effectively directed. However, accurate classification of clouds is challenging and often requires certain manual involvement due to the complex cloud forms and dispersion. To address this challenge, this paper proposes an improved cloud classification method based on a densely connected hybrid convolutional network. A dense connection mechanism is applied to hybrid three-dimensional convolutional neural network (3D-CNN) and two-dimensional convolutional neural network (2D-CNN) architectures to use the feature information of the spatial and spectral channels of the FY-4A satellite fully. By using the proposed network, cloud categorization solutions with a high temporal resolution, extensive coverage, and high accuracy can be obtained without the need for any human intervention. The proposed network is verified using tests, and the results show that it can perform real-time classification tasks for seven different types of clouds and clear skies in the Chinese region. For the CloudSat 2B-CLDCLASS product as a test target, the proposed network can achieve an overall accuracy of 95.2% and a recall of more of than 82.9% for all types of samples, outperforming the other deep-learning-based techniques. [ABSTRACT FROM AUTHOR]
- Subjects :
- CONVOLUTIONAL neural networks
ATMOSPHERIC circulation
WEATHER
CLOUD computing
Subjects
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 15
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 163989286
- Full Text :
- https://doi.org/10.3390/rs15102673