Back to Search Start Over

Building your own mountain: The effects, limits, and drawbacks of cold-water coral ecosystem engineering.

Authors :
van der Kaaden, Anna-Selma
Maier, Sandra R.
Siluo Chen
De Clippele, Laurence H.
de Froe, Evert
Gerkema, Theo
van de Koppel, Johan
Mohn, Christian
Rietkerk, Max
Soetaert, Karline
van Oevelen, Dick
Source :
Biogeosciences Discussions; 5/30/2023, p1-30, 30p
Publication Year :
2023

Abstract

Framework-forming cold-water corals are ecosystem engineers that build mounds in the deep-sea that can be several hundred meters high. The effect of the presence of cold-water coral mounds on their surrounding is typically difficult to separate from environmental factors that are not affected by the mounds. We investigated the environmental control on coldwater coral reefs at multiple spatial scales, using annotated video transects data, spatial variables (MEMs) and hydrodynamic model output in a redundancy analysis and with variance partitioning. Using available hydrodynamic simulations with cold20 water coral mounds and simulations where the mounds were artificially removed, we investigated the effect of coral mound ecosystem engineering on the spatial configuration of reef habitat and discriminated which environmental factors are and which are not affected by the mounds. We find that, due to the interaction between the coral mound and the water flow, different hydrodynamic zones are created on a coral mound that likely determine the typical benthic zonation of coral rubble at the mound foot, dead coral framework on the mound flank, and living corals near the summit. Moreover, we observed a so-called massenerhebung effect (well-known for terrestrial mountains) meaning that benthic zonation depends on the location on the mound rather than on the height above the seafloor or water depth. Our finding that ecosystem engineering determines the configuration of benthic habitats on coldwater coral mounds has many implications, such as that cold-water corals cannot simply move towards deeper water depths to avoid the adverse effects of climate change. We further find that downward velocities in winter, related to non-engineered environmental factors, e.g., deep winter mixing and dense water cascading, correlated to substantial differences in reef cover at the broadest spatial scale (20-30 km). Such hydrodynamic processes that stimulate the food supply towards the corals in winter are more important for the reefs than similar hydrodynamic processes in summer. There is much research on the ecosystem engineering effects of cold-water corals, but our results highlight that the influence of non-engineered environmental processes that accelerate the food supply towards the cold-water corals should not be underestimated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18106277
Database :
Complementary Index
Journal :
Biogeosciences Discussions
Publication Type :
Academic Journal
Accession number :
164036708
Full Text :
https://doi.org/10.5194/egusphere-2023-949