Back to Search Start Over

The Criterion of Supercooled Bionic Lotus Surfaces Repelling Impacting Droplets for Anti‐Icing Engineering.

Authors :
Zhu, Zewei
Li, Jingbo
Luo, Yimin
Li, Xia
Chen, Litao
Yang, Yujie
Luo, Zhuangzhu
Source :
Advanced Materials Interfaces; 6/6/2023, Vol. 10 Issue 16, p1-11, 11p
Publication Year :
2023

Abstract

Icephobic material is of great importance in power transportation, communication, aerospace, and so on. Bionic lotus superhydrophobic surfaces show good application prospects in anti‐icing by repelling impacting droplets. However, the boundary (criterion) between droplet bounce and deposition on superhydrophobic surface under cold freezing rain is unclear. Here, from the view of statistics, the boundary and internal heat transfer mechanism of the droplet bounce, pinning, and three kinds of deposition including icing at later, early retraction, and spread. are clarified Droplet viscosity increase reduces droplet contact with surface and inhibited splash at high We. Surfaces with temperature above −20.6 °C showed 100% droplet bounce after impact on We = 64.7, and the probability of water adhesion and ice nucleation decreases to ≈0%, resulting in completely anti‐icing. Droplet bounce transition mainly ascribe to the decrease retraction driven force caused by interface freezing and transition temperature increases approximately linearly from −25.9 to −21.1 °C within 21.6 < We < 75.5. Ice nuclei brought by condensation in humid environment (60–100 RH%) further cause droplet eccentric retraction and transition temperature increases to −6 to −10 °C. The fundamental understanding of droplet behaviors on supercooled superhydrophobic surface is beneficial for icephobic surfaces applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21967350
Volume :
10
Issue :
16
Database :
Complementary Index
Journal :
Advanced Materials Interfaces
Publication Type :
Academic Journal
Accession number :
164131857
Full Text :
https://doi.org/10.1002/admi.202300115