Back to Search Start Over

Molecular Signatures in Swine Innate and Adaptive Immune Responses to African Swine Fever Virus Antigens p30/p54/CD2v Expressed Using a Highly Efficient Semliki Forest Virus Replicon System.

Authors :
Huang, Mei
Zheng, Hanghui
Tan, Weixiong
Xiang, Chengwei
Fang, Niran
Xie, Wenting
Wen, Lianghai
Liu, Dingxiang
Chen, Ruiai
Source :
International Journal of Molecular Sciences; Jun2023, Vol. 24 Issue 11, p9316, 20p
Publication Year :
2023

Abstract

African swine fever virus (ASFV) causes a devastating viral hemorrhagic disease in domestic pigs and Eurasian wild boars, posing a foremost threat to the swine industry and pig farming. The development of an effective vaccine is urgently needed, but has been hampered by the lack of an in-depth, mechanistic understanding of the host immune response to ASFV infection and the induction of protective immunity. In this study, we report that immunization of pigs with Semliki Forest Virus (SFV) replicon-based vaccine candidates expressing ASFV p30, p54, and CD2v, as well as their ubiquitin-fused derivatives, elicits T cell differentiation and expansion, promoting specific T cell and humoral immunity. Due to significant variations in the individual non-inbred pigs in response to the vaccination, a personalized analysis was conducted. Using integrated analysis of differentially expressed genes (DEGs), Venn, KEGG and WGCNA, Toll-like receptor, C-type lectin receptor, IL17 receptor, NOD-like receptor and nucleic acid sensor-mediated signaling pathways were demonstrated to be positively correlated to the antigen-stimulated antibody production and inversely correlated to the IFN-γ secreting cell counts in peripheral blood mononuclear cells (PBMCs). An up-regulation of CIQA, CIQB, CIQC, C4BPA, SOSC3, S100A8 and S100A9, and down-regulation of CTLA4, CXCL2, CXCL8, FOS, RGS1, EGR1 and SNAI1 are general in the innate immune response post-the second boost. This study reveals that pattern recognition receptors TLR4, DHX58/DDX58 and ZBP1, and chemokines CXCL2, CXCL8 and CXCL10 may play important roles in regulating this vaccination-stimulated adaptive immune response. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
11
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
164218232
Full Text :
https://doi.org/10.3390/ijms24119316