Back to Search
Start Over
The Sensitivity of Community Extra-Structural Features on Event Prediction in Dynamic Social Networks.
- Source :
- Social Science Computer Review; Aug2023, Vol. 41 Issue 4, p1187-1206, 20p
- Publication Year :
- 2023
-
Abstract
- A dynamic Online Social Network is a special type of evolving complex network in which changes occur over time. The structure of a community may change over time due to the relationship changes between its members or with other communities. This is known as a community event. In this paper, we discussed the effect of important individual community features and the lengths of adequate time intervals considered in the analysis of the behavior of social networks on the prediction accuracy of each event. Furthermore, we introduced the extra-structural features as global social network features to justify the relationship between the lengths of time intervals used in the model training by using the best prediction accuracy of events. We found a relationship between the scale of network dynamics and the length of time intervals for observing the spread and decomposed events. Finally, by comparing the accuracy of the model based on time interval length which investigated based on cps-value in this study and using the Event Prediction in Dynamic Social Network (EPDSN) model, the hypothesis of a reverse relationship between cps growth rate and time interval length to obtain better prediction accuracy for both the spread and decomposed events. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 08944393
- Volume :
- 41
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Social Science Computer Review
- Publication Type :
- Academic Journal
- Accession number :
- 164441912
- Full Text :
- https://doi.org/10.1177/08944393211055813