Back to Search
Start Over
The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe.
- Source :
- Biogeosciences; 2023, Vol. 20 Issue 12, p2237-2250, 14p
- Publication Year :
- 2023
-
Abstract
- Deciduous forests are characterized by a higher albedo, a reduced stomatal resistance, and a deeper root system in comparison to coniferous forests. As a consequence, less solar radiation is absorbed and evapotranspiration is potentially increased, making an increase in the deciduous forest fraction a potentially promising measure to mitigate the burdens of heat extremes for humans and nature. We analyze this potential by means of an idealized 30-year-long regional climate model (RCM) experiment, in which all coniferous forests in Europe are replaced by deciduous forests and compared to a simulation using the actual forest composition. Results show that an increase in the deciduous forest fraction reduces the heat intensity during heat periods in most regions of Europe. During heat periods, there is a slight reduction in the mean daily maximum 2 m temperatures simulated of about 0.2 K locally and 0.1 K non-locally. Regions with a high cooling potential are southwestern France and northern Turkey, where heat period intensities are reduced by up to 1 K. Warming effects are simulated in Scandinavia and eastern Europe. Although the cooling effect on heat period intensities is statistically significant over large parts of Europe, the magnitude of the temperature reduction is small. Consequently, an increase in the deciduous forest fraction only has a limited potential to reduce heat period intensities in Europe and can therefore only be considered as a supporting mitigation measure to complement more effective mitigation strategies. [ABSTRACT FROM AUTHOR]
- Subjects :
- DECIDUOUS forests
ALBEDO
CONIFEROUS forests
SOLAR radiation
ATMOSPHERIC models
Subjects
Details
- Language :
- English
- ISSN :
- 17264170
- Volume :
- 20
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- Biogeosciences
- Publication Type :
- Academic Journal
- Accession number :
- 164766730
- Full Text :
- https://doi.org/10.5194/bg-20-2237-2023