Back to Search Start Over

Effects of polarizability and charge transfer on water dynamics and the underlying activation energies.

Authors :
Rick, Steven W.
Thompson, Ward H.
Source :
Journal of Chemical Physics; 5/21/2023, Vol. 158 Issue 19, p1-11, 11p
Publication Year :
2023

Abstract

A large number of force fields have been proposed for describing the behavior of liquid water within classical atomistic simulations, particularly molecular dynamics. In the past two decades, models that incorporate molecular polarizability and even charge transfer have become more prevalent, in attempts to develop more accurate descriptions. These are frequently parameterized to reproduce the measured thermodynamics, phase behavior, and structure of water. On the other hand, the dynamics of water is rarely considered in the construction of these models, despite its importance in their ultimate applications. In this paper, we explore the structure and dynamics of polarizable and charge-transfer water models, with a focus on timescales that directly or indirectly relate to hydrogen bond (H-bond) making and breaking. Moreover, we use the recently developed fluctuation theory for dynamics to determine the temperature dependence of these properties to shed light on the driving forces. This approach provides key insight into the timescale activation energies through a rigorous decomposition into contributions from the different interactions, including polarization and charge transfer. The results show that charge transfer effects have a negligible effect on the activation energies. Furthermore, the same tension between electrostatic and van der Waals interactions that is found in fixed-charge water models also governs the behavior of polarizable models. The models are found to involve significant energy–entropy compensation, pointing to the importance of developing water models that accurately describe the temperature dependence of water structure and dynamics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
158
Issue :
19
Database :
Complementary Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
164785105
Full Text :
https://doi.org/10.1063/5.0151253