Back to Search Start Over

Electrospun Fibers of Biocompatible and Biodegradable Polyesters, Poly(Ethylene Oxide) and Beeswax with Anti-Bacterial and Anti-Fungal Activities.

Authors :
Kyuchyuk, Selin
Paneva, Dilyana
Manolova, Nevena
Rashkov, Iliya
Karashanova, Daniela
Naydenov, Mladen
Markova, Nadya
Source :
Materials (1996-1944); Jul2023, Vol. 16 Issue 13, p4882, 14p
Publication Year :
2023

Abstract

Fibrous materials composed of core–sheath fibers from poly(ethylene oxide) (PEO), beeswax (BW) and 5-nitro-8-hydroxyquinoline (NQ) were prepared via the self-organization of PEO and BW during the single-spinneret electrospinning of a homogeneous blend solution of the partners. Additionally, the application of the same approach enabled the preparation of fibrous materials composed of core–double sheath fibers from PEO, poly(L-lactide) (PLA) and NQ or 5-chloro-7-iodo-8-hydroxyquinoline (CQ), as well as from PEO, poly(ε-caprolactone) (PCL) and NQ. The consecutive selective extraction of BW and of the polyester with hexane and tetrahydrofuran, respectively, evidenced that core–double sheath fibers from PEO/polyester/BW/drug consisted of a PEO core, a polyester inner sheath and a BW outer sheath. In order to evaluate the possibility of the application of fibrous materials from PEO/BW/NQ, PEO/PLA/BW/NQ, PEO/PCL/BW/NQ and PEO/PLA/BW/CQ for plant protection, microbiological studies were performed using both phytopathogenic microorganisms (Pseudomonas corrugata, Fusarium graminearum and Fusarium avenaceum) and beneficial microorganisms (Pseudomonas chlororaphis, Bacillus amyloliquefaciens and Trichoderma asperellum). It was found that the fibrous materials had anti-bacterial and anti-fungal activity against both phytopathogenic and beneficial microorganisms. This is the first report on the activity of fibrous materials loaded with 8-hydroxyquinoline derivatives not only against phytopathogenic but also against beneficial microorganisms that are of importance in agriculture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
13
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
164918161
Full Text :
https://doi.org/10.3390/ma16134882