Back to Search Start Over

Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi , to Waterlogging Stress and Post-Waterlogging Recovery.

Authors :
Zhang, Xi-Min
Duan, Sheng-Guang
Xia, Ying
Li, Jie-Ting
Liu, Lun-Xian
Tang, Ming
Tang, Jing
Sun, Wei
Yi, Yin
Source :
International Journal of Molecular Sciences; Jul2023, Vol. 24 Issue 13, p10509, 19p
Publication Year :
2023

Abstract

Climate change has resulted in frequent heavy and prolonged rainfall events that exacerbate waterlogging stress, leading to the death of certain alpine Rhododendron trees. To shed light on the physiological and molecular mechanisms behind waterlogging stress in woody Rhododendron trees, we conducted a study of Rhododendron delavayi, a well-known alpine flower species. Specifically, we investigated the physiological and molecular changes that occurred in leaves of R. delavayi subjected to 30 days of waterlogging stress (WS30d), as well as subsequent post-waterlogging recovery period of 10 days (WS30d-R10d). Our findings reveal that waterlogging stress causes a significant reduction in CO<subscript>2</subscript> assimilation rate, stomatal conductance, transpiration rate, and maximum photochemical efficiency of PSII (Fv/Fm) in the WS30d leaves, by 91.2%, 95.3%, 93.3%, and 8.4%, respectively, when compared to the control leaves. Furthermore, the chlorophyll a and total chlorophyll content in the WS30d leaves decreased by 13.5% and 16.6%, respectively. Both WS30d and WS30d-R10d leaves exhibited excessive H<subscript>2</subscript>O<subscript>2</subscript> accumulation, with a corresponding decrease in lignin content in the WS30d-R10d leaves. At the molecular level, purine metabolism, glutathione metabolism, photosynthesis, and photosynthesis-antenna protein pathways were found to be primarily involved in WS30d leaves, whereas phenylpropanoid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, fatty acid elongation, and cutin, suberin, and wax biosynthesis pathways were significantly enriched in WS30d-R10d leaves. Additionally, both WS30d and WS30d-R10d leaves displayed a build-up of sugars. Overall, our integrated transcriptomic, physiological, and metabolomic analysis demonstrated that R. delavayi is susceptible to waterlogging stress, which causes irreversible detrimental effects on both its physiological and molecular aspects, hence compromising the tree's ability to fully recover, even under normal growth conditions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
13
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
164919125
Full Text :
https://doi.org/10.3390/ijms241310509