Back to Search Start Over

Nanocellulose Sponges Containing Antibacterial Basil Extract.

Authors :
Oprică, Gabriela Mădălina
Panaitescu, Denis Mihaela
Usurelu, Catalina Diana
Vlăsceanu, George Mihai
Stanescu, Paul Octavian
Lixandru, Brandusa Elena
Vasile, Valentin
Gabor, Augusta Raluca
Nicolae, Cristian-Andi
Ghiurea, Marius
Frone, Adriana Nicoleta
Source :
International Journal of Molecular Sciences; Jul2023, Vol. 24 Issue 14, p11871, 18p
Publication Year :
2023

Abstract

Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
14
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
169324759
Full Text :
https://doi.org/10.3390/ijms241411871