Back to Search Start Over

RGB-D SLAM in indoor dynamic environments with two channels based on scenario classification.

Authors :
Zhou, Yao
Tao, Fazhan
Fu, Zhumu
Chen, Qihong
Zhu, Longlong
Source :
Measurement Science & Technology; Nov2023, Vol. 34 Issue 11, p1-13, 13p
Publication Year :
2023

Abstract

In visual simultaneous localization and mapping (SLAM) systems, the limitations of the assumption of scene rigidity are usually broken by using learning-based or geometry-based methods. However, learning-based methods usually have a high time cost, and geometry-based methods usually do not result in clean maps which are useful for advanced robotic applications. In this paper, an RGB-D SLAM in indoor dynamic environments with two channels that classifies frames as slightly and highly dynamic scenarios based on matching accuracy is proposed. And a geometric constraint based on Hamming distance is proposed to improve the effectiveness of matching accuracy as a basis for scenario classification. Dynamic features are detected by affine consistency constraint and semantic method. The semantic method is only used for highly dynamic scenarios to reduce the time cost of dynamic feature detection and provide a basis for mapping. Furthermore, an improved adaptive threshold algorithm is proposed to improve the robustness of feature matching. The proposed method is evaluated in the TUM RGB-D dataset and a real scenario. The experimental results demonstrate that the proposed method achieves highly accurate tracking with appreciable time cost in both slightly and highly indoor dynamic environments while obtaining effective maps. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
HAMMING distance
CLASSIFICATION

Details

Language :
English
ISSN :
09570233
Volume :
34
Issue :
11
Database :
Complementary Index
Journal :
Measurement Science & Technology
Publication Type :
Academic Journal
Accession number :
169728565
Full Text :
https://doi.org/10.1088/1361-6501/ace988