Back to Search
Start Over
RGB-D SLAM in indoor dynamic environments with two channels based on scenario classification.
- Source :
- Measurement Science & Technology; Nov2023, Vol. 34 Issue 11, p1-13, 13p
- Publication Year :
- 2023
-
Abstract
- In visual simultaneous localization and mapping (SLAM) systems, the limitations of the assumption of scene rigidity are usually broken by using learning-based or geometry-based methods. However, learning-based methods usually have a high time cost, and geometry-based methods usually do not result in clean maps which are useful for advanced robotic applications. In this paper, an RGB-D SLAM in indoor dynamic environments with two channels that classifies frames as slightly and highly dynamic scenarios based on matching accuracy is proposed. And a geometric constraint based on Hamming distance is proposed to improve the effectiveness of matching accuracy as a basis for scenario classification. Dynamic features are detected by affine consistency constraint and semantic method. The semantic method is only used for highly dynamic scenarios to reduce the time cost of dynamic feature detection and provide a basis for mapping. Furthermore, an improved adaptive threshold algorithm is proposed to improve the robustness of feature matching. The proposed method is evaluated in the TUM RGB-D dataset and a real scenario. The experimental results demonstrate that the proposed method achieves highly accurate tracking with appreciable time cost in both slightly and highly indoor dynamic environments while obtaining effective maps. [ABSTRACT FROM AUTHOR]
- Subjects :
- HAMMING distance
CLASSIFICATION
Subjects
Details
- Language :
- English
- ISSN :
- 09570233
- Volume :
- 34
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Measurement Science & Technology
- Publication Type :
- Academic Journal
- Accession number :
- 169728565
- Full Text :
- https://doi.org/10.1088/1361-6501/ace988