Back to Search
Start Over
Eigenvalues and diagonal elements.
- Source :
- Indian Journal of Pure & Applied Mathematics; Sep2023, Vol. 54 Issue 3, p757-759, 3p
- Publication Year :
- 2023
-
Abstract
- A basic theorem in linear algebra says that if the eigenvalues and the diagonal entries of a Hermitian matrix A are ordered as λ 1 ≤ λ 2 ≤... ≤ λ n and a 1 ≤ a 2 ≤... ≤ a n , respectively, then λ 1 ≤ a 1 . We show that for some special classes of Hermitian matrices this can be extended to inequalities of the form λ k ≤ a 2 k - 1 , k = 1 , 2 ,... , ⌈ n 2 ⌉ . [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00195588
- Volume :
- 54
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Indian Journal of Pure & Applied Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 169849316
- Full Text :
- https://doi.org/10.1007/s13226-022-00293-y