Back to Search
Start Over
An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients.
- Source :
- Scientific Reports; 8/12/2023, Vol. 13 Issue 1, p1-11, 11p
- Publication Year :
- 2023
-
Abstract
- Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from <superscript>18</superscript>F-fluorodeoxyglucose (<superscript>18</superscript>F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL <superscript>18</superscript>F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmax<subscript>bulk</subscript> was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 13
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 169910964
- Full Text :
- https://doi.org/10.1038/s41598-023-40218-1