Back to Search Start Over

Mechanistic Action of Cell Cycle Arrest and Intrinsic Apoptosis via Inhibiting Akt/mTOR and Activation of p38-MAPK Signaling Pathways in Hep3B Liver Cancer Cells by Prunetrin—A Flavonoid with Therapeutic Potential.

Authors :
Abusaliya, Abuyaseer
Jeong, Se Hyo
Bhosale, Pritam Bhagwan
Kim, Hun Hwan
Park, Min Yeong
Kim, Eunhye
Won, Chung Kil
Park, Kwang Il
Heo, Jeong Doo
Kim, Hyun Wook
Ahn, Meejung
Seong, Je Kyung
Kim, Gon Sup
Source :
Nutrients; Aug2023, Vol. 15 Issue 15, p3407, 16p
Publication Year :
2023

Abstract

Hepatocellular carcinoma (HCC) has a poor prognosis and a low survival rate. Drugs without side effects are desperately needed since chemotherapy has a negative effect on the host cells. Previous research has firmly established that plant-based compounds have significant bioactivities without a negative impact on the host. Flavonoids, in particular, are a class of compounds with both anti-inflammatory and anti-cancer properties. Prunetrin (PUR) is a glycosyloxyisoflavone (Prunetin 4′-O-glucoside) derived from Prunus sp., and its other form, called prunetin, showed optimistic results in an anti-cancerous study. Hence, we aimed to discover the anti-cancer ability of prunetrin in liver cancer Hep3B cells. Our cytotoxicity results showed that PUR can decrease cell viability. The colony formation assay confirms this strongly and correlates with cell cytotoxicity results. Prunetrin, in a dose-dependent manner, arrested the cell cycle in the G2/M phase and decreased the expression of cyclin proteins such as Cyclin B1, CDK1/CDC2, and CDC25c. Prunetrin treatment also promoted the strong cleavage of two important apoptotic hallmark proteins called PARP and caspase-3. It also confirms that apoptosis occurs through the mitochondrial pathway through increased expression of cleaved caspase-9 and increased levels of the pro-apoptotic protein Bak. Bak was significantly increased with the declining expression of the anti-apoptotic protein Bcl-xL. Next, it inhibits the mTOR/AKT signaling pathways, proving that prunetrin includes apoptosis and decreases cell viability by suppressing these pathways. Further, it was also observed that the activation of p38-MAPK was dose-dependent. Taken together, they provide evidence that prunetrin has an anti-cancerous ability in Hep3B liver cancer cells by arresting the cell cycle via p38 and inhibiting mTOR/AKT. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20726643
Volume :
15
Issue :
15
Database :
Complementary Index
Journal :
Nutrients
Publication Type :
Academic Journal
Accession number :
169927531
Full Text :
https://doi.org/10.3390/nu15153407