Back to Search Start Over

CBNet: A Composite Backbone Network Architecture for Object Detection.

Authors :
Liang, Tingting
Chu, Xiaojie
Liu, Yudong
Wang, Yongtao
Tang, Zhi
Chu, Wei
Chen, Jingdong
Ling, Haibin
Source :
IEEE Transactions on Image Processing; 2022, Vol. 31, p6893-6906, 14p
Publication Year :
2022

Abstract

Modern top-performing object detectors depend heavily on backbone networks, whose advances bring consistent performance gains through exploring more effective network structures. In this paper, we propose a novel and flexible backbone framework, namely CBNet, to construct high-performance detectors using existing open-source pre-trained backbones under the pre-training fine-tuning paradigm. In particular, CBNet architecture groups multiple identical backbones, which are connected through composite connections. Specifically, it integrates the high- and low-level features of multiple identical backbone networks and gradually expands the receptive field to more effectively perform object detection. We also propose a better training strategy with auxiliary supervision for CBNet-based detectors. CBNet has strong generalization capabilities for different backbones and head designs of the detector architecture. Without additional pre-training of the composite backbone, CBNet can be adapted to various backbones (i.e., CNN-based vs. Transformer-based) and head designs of most mainstream detectors (i.e., one-stage vs. two-stage, anchor-based vs. anchor-free-based). Experiments provide strong evidence that, compared with simply increasing the depth and width of the network, CBNet introduces a more efficient, effective, and resource-friendly way to build high-performance backbone networks. Particularly, our CB-Swin-L achieves 59.4% box AP and 51.6% mask AP on COCO test-dev under the single-model and single-scale testing protocol, which are significantly better than the state-of-the-art results (i.e., 57.7% box AP and 50.2% mask AP) achieved by Swin-L, while reducing the training time by $6\times $. With multi-scale testing, we push the current best single model result to a new record of 60.1% box AP and 52.3% mask AP without using extra training data. Code is available at https://github.com/VDIGPKU/CBNetV2 . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
31
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077410
Full Text :
https://doi.org/10.1109/TIP.2022.3216771