Back to Search Start Over

The Role of Redundant Bases and Shrinkage Functions in Image Denoising.

Authors :
Hel-Or, Yacov
Ben-Artzi, Gil
Source :
IEEE Transactions on Image Processing; 2021, Vol. 30, p3778-3792, 15p
Publication Year :
2021

Abstract

Wavelet denoising is a classical and effective approach for reducing noise in images and signals. Suggested in 1994, this approach is carried out by rectifying the coefficients of a noisy image, in the transform domain, using a set of shrinkage functions (SFs). A plethora of papers deals with the optimal shape of the SFs and the transform used. For example, it is widely known that applying SFs in a redundant basis improves the results. However, it is barely known that the shape of the SFs should be changed when the transform used is redundant. In this paper, we introduce a complete picture of the interrelations between the transform used, the optimal shrinkage functions, and the domains in which they are optimized. We suggest three schemes for optimizing the SFs and provide bounds of the remaining noise, in each scheme, with respect to the other alternatives. In particular, we show that for subband optimization, where each SF is optimized independently for a particular band, optimizing the SFs in the spatial domain is always better than or equal to optimizing the SFs in the transform domain. Furthermore, for redundant bases, we provide the expected denoising gain that can be achieved, relative to the unitary basis, as a function of the redundancy rate. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077732
Full Text :
https://doi.org/10.1109/TIP.2021.3065226