Back to Search Start Over

Composited FishNet: Fish Detection and Species Recognition From Low-Quality Underwater Videos.

Authors :
Zhao, Zhenxi
Liu, Yang
Sun, Xudong
Liu, Jintao
Yang, Xinting
Zhou, Chao
Source :
IEEE Transactions on Image Processing; 2021, Vol. 30, p4719-4734, 16p
Publication Year :
2021

Abstract

The automatic detection and identification of fish from underwater videos is of great significance for fishery resource assessment and ecological environment monitoring. However, due to the poor quality of underwater images and unconstrained fish movement, traditional hand-designed feature extraction methods or convolutional neural network (CNN)-based object detection algorithms cannot meet the detection requirements in real underwater scenes. Therefore, to realize fish recognition and localization in a complex underwater environment, this paper proposes a novel composite fish detection framework based on a composite backbone and an enhanced path aggregation network called Composited FishNet. By improving the residual network (ResNet), a new composite backbone network (CBresnet) is designed to learn the scene change information (source domain style), which is caused by the differences in the image brightness, fish orientation, seabed structure, aquatic plant movement, fish species shape and texture differences. Thus, the interference of underwater environmental information on the object characteristics is reduced, and the output of the main network to the object information is strengthened. In addition, to better integrate the high and low feature information output from CBresnet, the enhanced path aggregation network (EPANet) is also designed to solve the insufficient utilization of semantic information caused by linear upsampling. The experimental results show that the average precision (AP)0.5:0.95, AP50 and average recall (AR)max=10 of the proposed Composited FishNet are 75.2%, 92.8% and 81.1%, respectively. The composite backbone network enhances the characteristic information output of the detected object and improves the utilization of characteristic information. This method can be used for fish detection and identification in complex underwater environments such as oceans and aquaculture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10577149
Volume :
30
Database :
Complementary Index
Journal :
IEEE Transactions on Image Processing
Publication Type :
Academic Journal
Accession number :
170077811
Full Text :
https://doi.org/10.1109/TIP.2021.3074738