Back to Search Start Over

Magic Numbers and Mixing Degree in Many-Fermion Systems.

Authors :
Monteoliva, D.
Plastino, A.
Plastino, A. R.
Source :
Entropy; Aug2023, Vol. 25 Issue 8, p1206, 11p
Publication Year :
2023

Abstract

We consider an N fermion system at low temperature T in which we encounter special particle number values N m exhibiting special traits. These values arise when focusing attention upon the degree of mixture (DM) of the pertinent quantum states. Given the coupling constant of the Hamiltonian, the DMs stay constant for all N-values but experience sudden jumps at the N m . For a quantum state described by the matrix ρ , its purity is expressed by T r ρ 2 and then the degree of mixture is given by 1 − T r ρ 2 , a quantity that coincides with the entropy S q for q = 2 . Thus, Tsallis entropy of index two faithfully represents the degree of mixing of a state, that is, it measures the extent to which the state departs from maximal purity. Macroscopic manifestations of the degree of mixing can be observed through various physical quantities. Our present study is closely related to properties of many-fermion systems that are usually manipulated at zero temperature. Here, we wish to study the subject at finite temperature. The Gibbs ensemble is appealed to. Some interesting insights are thereby gained. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10994300
Volume :
25
Issue :
8
Database :
Complementary Index
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
170746334
Full Text :
https://doi.org/10.3390/e25081206