Back to Search Start Over

A deep learning-based stripe self-correction method for stitched microscopic images.

Authors :
Wang, Shu
Liu, Xiaoxiang
Li, Yueying
Sun, Xinquan
Li, Qi
She, Yinhua
Xu, Yixuan
Huang, Xingxin
Lin, Ruolan
Kang, Deyong
Wang, Xingfu
Tu, Haohua
Liu, Wenxi
Huang, Feng
Chen, Jianxin
Source :
Nature Communications; 9/5/2023, Vol. 14 Issue 1, p1-15, 15p
Publication Year :
2023

Abstract

Stitched fluorescence microscope images inevitably exist in various types of stripes or artifacts caused by uncertain factors such as optical devices or specimens, which severely affects the image quality and downstream quantitative analysis. Here, we present a deep learning-based Stripe Self-Correction method, so-called SSCOR. Specifically, we propose a proximity sampling scheme and adversarial reciprocal self-training paradigm that enable SSCOR to utilize stripe-free patches sampled from the stitched microscope image itself to correct their adjacent stripe patches. Comparing to off-the-shelf approaches, SSCOR can not only adaptively correct non-uniform, oblique, and grid stripes, but also remove scanning, bubble, and out-of-focus artifacts, achieving the state-of-the-art performance across different imaging conditions and modalities. Moreover, SSCOR does not require any physical parameter estimation, patch-wise manual annotation, or raw stitched information in the correction process. This provides an intelligent prior-free image restoration solution for microscopists or even microscope companies, thus ensuring more precise biomedical applications for researchers. Image stitching in fluorescence microscopy can be a hindrance to image quality and to downstream quantitative analyses. Here, the authors propose a deep learning-based stripe self-correction method that corrects diverse stripes and artifacts for stitched microscopic images. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
171387672
Full Text :
https://doi.org/10.1038/s41467-023-41165-1