Back to Search
Start Over
Genome-Wide Analysis and Expression Profiling of Trehalose-6-Phosphate Phosphatase (TPP) in Punica granatum in Response to Abscisic-Acid-Mediated Drought Stress.
- Source :
- Plants (2223-7747); Sep2023, Vol. 12 Issue 17, p3076, 13p
- Publication Year :
- 2023
-
Abstract
- Trehalose, a nonreducing disaccharide, has been linked to plant growth and development as well as stress response. The enzyme trehalose-6-phosphate phosphatase (TPP) plays a crucial role in the production of trehalose in higher plants. This study identified a total of seven TPP family genes within the pomegranate species (PgTPP1–PgTPP7). Three subgroups of the seven PgTPPs were identified through phylogenetic analysis. The gene length, coding sequence (CD) length, and chromosomal location of the PgTPP genes were studied. In addition, the PgTPP proteins' length, isoelectric point (Ip), grand average of hydropathicity (GRAVY), conserved domains, conserved motifs, synteny, and phylogenetic relationships with Arabidopsis and tomato TPP proteins were examined. The cis-acting elements in the promoter region and the expression of the PgTPP genes under abscisic acid (ABA)-mediated drought stress as well as the differences in expression in the root, flower, and leaf tissues were also assessed. The PgTPP2 and PgTPP5 genes are involved in the response to abscisic-acid-mediated drought stress, as shown by drought-mediated stress transcriptomes. The PgTPP1 and PgTPP2 genes were expressed only in floral tissue and roots, respectively. The remaining PgTPPs did not exhibit any significant alterations in gene expression in roots, flowers, or leaves. The current study has the potential to provide a comprehensive understanding of the biological characteristics of PgTPP proteins in various developmental processes and their role in the pomegranate plant's response to different stressors. However, further research is required to explore their precise biological role. Hence, conducting a comprehensive functional validation study on PgTPPs could contribute to the development of stress-resistant agricultural cultivars. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 22237747
- Volume :
- 12
- Issue :
- 17
- Database :
- Complementary Index
- Journal :
- Plants (2223-7747)
- Publication Type :
- Academic Journal
- Accession number :
- 171858243
- Full Text :
- https://doi.org/10.3390/plants12173076