Back to Search Start Over

Ultrasensitive levofloxacin electrochemical biosensor based on semiconducting covalent organic framework/poly-L-cysteine/triangular Ag nanoplates modified glassy carbon electrode.

Authors :
Sun, Lei
Guo, Hao
Liu, Bingqing
Pan, Zhilan
Wu, Ning
Zhang, Hao
Yang, Wu
Source :
Microchimica Acta; Sep2023, Vol. 190 Issue 9, p1-10, 10p
Publication Year :
2023

Abstract

A novel electrochemical biosensor with excellent performance was fabricated for levofloxacin (LEV) detection, which adopted triangular Ag nanoplates (Tri-AgNP) confined in a poly-L-cysteine (poly-L-Cys) film and a semiconducting covalent organic framework (COF) as the electrochemical sensing material. The developed electrochemical sensor revealed excellent analytical properties because of its good electrical conductivity, fast electron transfer, and abundant bioactive site. Based on this, a linear relationship between the LEV concentration and the peak current response at 0.92 V was obtained under the optimal experimental conditions by differential pulse voltammetry (DPV), with a wide linear range of 0.05 to 600 μM and a low limit of detection (LOD) of 0.0061 μM. The prepared sensor also realized sensitive and accurate determination of LEV in human serum and urine samples by standard addition method, with satisfactory recoveries (97.1 to 104%) and a low relative standard deviation of less than 4.6%. These results indicated that the novel ternary system has a promising application in the development of electrochemical signal probe and electrochemical biosensing platform. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00263672
Volume :
190
Issue :
9
Database :
Complementary Index
Journal :
Microchimica Acta
Publication Type :
Academic Journal
Accession number :
171989982
Full Text :
https://doi.org/10.1007/s00604-023-05866-0