Back to Search Start Over

First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa.

Authors :
Turon, Gemma
Hlozek, Jason
Woodland, John G.
Kumar, Ankur
Chibale, Kelly
Duran-Frigola, Miquel
Source :
Nature Communications; 9/15/2023, Vol. 14 Issue 1, p1-11, 11p
Publication Year :
2023

Abstract

Streamlined data-driven drug discovery remains challenging, especially in resource-limited settings. We present ZairaChem, an artificial intelligence (AI)- and machine learning (ML)-based tool for quantitative structure-activity/property relationship (QSAR/QSPR) modelling. ZairaChem is fully automated, requires low computational resources and works across a broad spectrum of datasets. We describe an end-to-end implementation at the H3D Centre, the leading integrated drug discovery unit in Africa, at which no prior AI/ML capabilities were available. By leveraging in-house data collected over a decade, we have developed a virtual screening cascade for malaria and tuberculosis drug discovery comprising 15 models for key decision-making assays ranging from whole-cell phenotypic screening and cytotoxicity to aqueous solubility, permeability, microsomal metabolic stability, cytochrome inhibition, and cardiotoxicity. We show how computational profiling of compounds, prior to synthesis and testing, can inform progression of frontrunner compounds at H3D. This project is a first-of-its-kind deployment at scale of AI/ML tools in a research centre operating in a low-resource setting. Streamlined data-driven drug discovery remains challenging, especially in resource-limited settings. Here, the authors present ZairaChem, an AI/ML tool that streamlines QSAR/QSPR modelling, implemented for the first time at the H3D Centre in South Africa. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
171993316
Full Text :
https://doi.org/10.1038/s41467-023-41512-2