Back to Search
Start Over
A novel approach to automatic seizure detection using computer vision and independent component analysis.
- Source :
- Epilepsia (Series 4); Sep2023, Vol. 64 Issue 9, p2472-2483, 12p
- Publication Year :
- 2023
-
Abstract
- Objective: Epilepsy is a neurological disease that affects ~50 million people worldwide, 30% of which have refractory epilepsy and recurring seizures, which may contribute to higher anxiety levels and poorer quality of life. Seizure detection may contribute to addressing some of the challenges associated with this condition, by providing information to health professionals regarding seizure frequency, type, and/or location in the brain, thereby improving diagnostic accuracy and medication adjustment, and alerting caregivers or emergency services of dangerous seizure episodes. The main focus of this work was the development of an accurate video‐based seizure‐detection method that ensured unobtrusiveness and privacy preservation, and provided novel approaches to reduce confounds and increase reliability. Methods: The proposed approach is a video‐based seizure‐detection method based on optical flow, principal component analysis, independent component analysis, and machine learning classification. This method was tested on a set of 21 tonic–clonic seizure videos (5–30 min each, total of 4 h and 36 min of recordings) from 12 patients using leave‐one‐subject‐out cross‐validation. Results: High accuracy levels were observed, namely a sensitivity and specificity of 99.06% ± 1.65% at the equal error rate and an average latency of 37.45 ± 1.31 s. When compared to annotations by health care professionals, the beginning and ending of seizures was detected with an average offset of 9.69 ± 0.97 s. Significance: The video‐based seizure‐detection method described herein is highly accurate. Moreover, it is intrinsically privacy preserving, due to the use of optical flow motion quantification. In addition, given our novel independence‐based approach, this method is robust to different lighting conditions, partial occlusions of the patient, and other movements in the video frame, thereby setting the base for accurate and unobtrusive seizure detection. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00139580
- Volume :
- 64
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Epilepsia (Series 4)
- Publication Type :
- Academic Journal
- Accession number :
- 172021712
- Full Text :
- https://doi.org/10.1111/epi.17677